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ON THE DERIVATION OF THE
DISTRIBUTION OF THE
KOLMOGOROV-SMIRNOV
ONE-SAMPLE STATISTIC

-ADEL MOHAMED ZAHER
Faculty of Economics and Political Science

Cairo University
1. INTRODUCTION -

In several practical situations, the problem of obtaining information about
the form of the population from which a sample is obtained is addressed. The
‘compatibility of the observed yalues in a given sample with a speciﬁé distribution
can be checked by a gooduess-of-fit test. The null hypothesis in such a test is
a-statement abont the form of Lhe curnulative distribution function (cdl) of the
parent populativn. The most widely used gooducss-of-fil Lests are the chi-square
test, proposed by Karl Pearson in 1900, and the Kolmogorov-Smirnov (K-S) test

which is Lthe subject of this article.

The Kolmogorov-Smirnov tesh is one of several goodness.-of-ﬁt tests based
on Lhe empirical (sample) distribution function, denoted by F,(z) and defined for
all real x as the proportion of Lthe sample values not cxceeding x. Specifically, the
K-S test is based on the maximum deviation between the empirical distribution

{unction and the distribution function specified by the null hypothesis.:



192

Let Xy, Xz, et , X. be a random sample [rom a population with a continu-
ous distribution function Fx (z) and consider the testing problem : H : Fx (z) =
Fo(z) for all x against the alternative hypothesis A : Fx (z) # Fo(z) for some
x. For any value of x, the empirical distribution function, Fu(z) , provides a con-
sistent point estimate for Fx (z). Moreover, the Clivenko-Cantelli theorem states

that F, () converges mmiformly to Fy () ; i.c., for any ¢ > 0,
lim P [sup | Falz) = Fx(z)|> €| =0.
R 0 r

Therefore, for sufficiently farge values of n, the deviation between the true cdf
“and its statistical image provided by the empirical distribution function should
be small for all x except for sampling variation. This result suggests the use of

the statistic
Dn. = 3':P' Fn(’)“"‘o(:) l (l)

{or the tesling probletin meutioned above where H is rejected for large values of

D" ( with Fx (z) replaced by Fp ().

The statistic D, ,called the K-S one-sample statistic, is very useful in non-
parametric statistical inference because its sampling distribution does not depend
on Fx (z) as long as Fx is conlinuous ( that is, it is distribution-free). Therefore,
onc can assume without loss of generality that £x (z) is the uniform distribution
on _(0.1). llowever, the derivalion of the distribution of D, is rather tedious

{Gibbons, 1971, p. 77). For D, as defined in (1) where Fx (z) is any continuous

function, we have

0 forv <0

_}1';4-14 f]n""" [’_';%'-’.Q-V .
l.j S T fluug e us) duy -
- ) (3= _,
P(D,,<2ln+|/)= 3 n ™ .
for0 < v Shz;—'-
I ' for v > =1

where

dU| .

(2)

s o

07 8 e e



n! for0<uyy<us<---<u, <1
flunuz, e ua) = .
; 0 otherwise

A proof of this result based on a number of properties of order statistics is given
in Cibbons {10971, pp. T8-T9). An alternative derivalion of the distribution of

D, was obtained by Massev (1950).

According to Gibbons, the result of Eq. (2} is troublesome to evaluate as

it must be used with care. For example, when a=2, then for « & (0, %] ,

b b
P(Dy<i+v)= Z!Lf I duzdy,

- [
i-v Y-V

O<cuy; <u <l

The limits of this double integral can not be determined for the whole interval

1Y and [%.3] must be considered sepa-

(0, 3] lnstead, the two subinterval : (0, §

rately. For all v, the probability is given by :

0 for v <0
2(20)? for O<v< g

P(D2<%+I/)= Y -
~20°+3v - 0123 for 2<v <
1 for v>3

For any specific values of vand n, one can evaluate P { D, < .-,l; + v ). The
inverse procedure, which is more appropriate for inference, is to find that value
Dna such that P (D, > Dao ) = a. The K-S one-sample goodness-of-fit test
with siguificance level a is then to reject H @ Fyx (z) = Fp(z) for all x when
D. > D,,. Numerical values of Dn, for @ = 0.0l and o = 0.05 have been
tahulaled for some selected values of n [see, for example, Owen (1962)). For large

samples, Kolmogorov (1933) derived an approximation to the exact distribution

of the test statistic 1,
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In the present article, the properties of the multiple integral that defines
the probability P (D, < = + v ) are investigated; and a partitioning procedure
is proposed [or the evaluation of this probability. The procedure is then applied

to the case n=3 for the sake of illustration.

2. SOME BASIC PROPERTIES OF THE
MULTIPLE INTEGRAL DEFINING
THE DISTRIBUTION OF D,

As indicated in Section One, the multiple integral of equation (2) that
“defines the distribution of the K-S one-sample statistic, D,, is troublesome to
evaluate. In order to avoid limits overlapping, the integral can be written in the

[ollowing more precise form:

min(;—n+v. 1 miu(%%—v. 1) min("z‘:' +v,1)
I)(l)n<,2'—n+y)= i i
mnx(O,;‘;—v) max{u, ..f;-v) max(tn_ ,7—’;:-1—11)

nl du, ---du,

for 0<v izt (3)

The lower limit of the j-th integral, max( u;_, ,31;—‘ —v) , is free from u;_y if
cj =34;—' — vis greater than the maximum value taken by u;.; which is equal to

min (2222 4, 1) (the upper limit of the (j-1)st integral). Thus, the lower limits

of the multiple integral of Eq. (3) are free from the u}s if

2j -1 (2j -3)

- v 2 min{—— LD, J=2,3---, 4
n 2min(=5— 4w 1), " 4
For v € &, min (%L + v, 1) = % for j = 1,2, ---, n. Also condition

(-1) is satisficd. Therefore, for v < & | we have

in
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e L4v =ty
P(Dn<t+v)y= nl [ e f du, ---duy
W v ELE P
n (11!:|\+U
= n! [] [ du,
=t \@m=y_,
= n!(2v)" - (3)
For v > = the lower limits of the multiple iutegral defining the probability

P (D, < &+v )arenot [ree from the v’s. Consider the region of integration R =
2n ‘ J D 2

{u P < g 2'2‘;'} and define the additional order statistic ug = 0. Partition

R into the subregions R, Ry,--+, Rooy, where

2~ N
Pleve P st ®)

4

For the k-th subregion, Ry,the limits of the multiple integral of Eq. (3) have the

following properties:

I. The fiest k lower limits Ly, Lo, -+, L are equal to up, uy, -+ , ur~y , respectively.
L‘=ma( (u. Zl;l_u) :]_2. n
J : )=l T 1 J + &y )
-1 _ 21 2%k-1 : *%-1
e 2 o ( since v > 571

(i=k)
< n

As L“"l <0 for j £k, then max(uj— ,3151 -v) =ujq ,

for j = 4.2, k.

2. The fiest n-k upper limits My, My, ..., M. ate equal to Zln. + v, ;3; +

Yn=kj=1
in

V..., + v, tespectively.

in:nlin(Qz—:l{-u.l) , J=1,2-n
2j-1 2j=1 , 2641 : 2.4l
T=+rv S =+ 5T { since v < 3

< I+%

= n
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Since&_gs 1l for j £ n—k,it [ollows that min ( ’Jﬁ—'-{-v, 1) = U=l .,

for j=1,2,---,n—k

3. Each of the last k upper limits is equal to one

27-1 251 2k-1 M k=1
Tohe> T (since v > 5520 )
> [+k=1
n

> 1 for j=n—-k+l,n—k+2.--,n

[lence,nﬁn('—"%;—l-*-vyl):l for j=n—k+1.n—k+2,---,n.

Using the above properties, the multiple integral defining the probability

P (Dn < 3z+v ) for v € Rican be written as:

Mi(v) Ma(v)  Me(v)  Migy () Mo (v)
F(D,‘(#-l-y): ..
un 1 Be~t max(uy .7;:' -v) max( in-1 ,’—';:—L—u)

n! du, ---du
focr v € R (7

3. A PROPOSED PROCEDURE FOR THE
EVALUATION OF THE PROBABILITY
P(D, < -,l,; +v)

As noted carlicr, loc values of v > 3=, the lower limits of the muitiple inte-
gral defining the probability / ( D < 2& + v ) are not [ree from the ujs. In this
case, the determination of these limits is a troublesome task. Dealing individually
with each subregion R; = {u : 2’;—:‘ <v< %j“—‘} , k=1,2, --.,n—=1;and the
extra partitioaing of R, (if needed), however, would facilitate the accomplishment

of Lhis task.

According Lo 12q. (7), the problem of evaluating the probability P (D, <
+=+v ) for v € R is reduced to the problem of determining each of max( uk, cz41),

4 My
0aX{ e cea)e oo and max(v._g, e0) where ¢ = =1,-"-—l -v,
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J=k+0,k+2, ...,n For v € R we have

In Ay (v) Mn (v)
P(I)n<2—ln'+l/)=lk= f f } e
Ly oax( g, Cq) max{ knat, Ca)

n! du, ---du,

for v € R {8)

where L, and L, are the limits of the k-th integral corresponding to the order

statistic ut ( L; and L;depend on k. They are not written here as L,(k) and
La(k) just for Lhe sake of simplicity),

In order to determine max( us, ceq1),the following procedure is used :

1. Max( ug, cest) can be directly simplified to either uyor cey( under the fol-
lowing conditions:

(1) Ly € laor Ly £ Lyfor all values of v € R, and

c if a <c. forall v€ R
(b)  max(ur, cxp:) = k+1 1S Gkt k

ue  if a2 2 Cep for all v € R
where ay = min( Ly, L2) and ap = max( Ly, L2)

2. 1l max({ ug. cesy)is not determined in step (1), then the interval [ Ly, La|is

divided into the two intervals : [ Ly, ¢xev1) and (et Lo] and the integral
[ cau Lhen be written as:

k41 Mepq (v) Ma (v}
[ = f f n!dun“'dul
L, max( by Che1) max(tn—1. Cn)
%] Mgy (v} Ma (v}
o , I n! dun ---duy (9)
Skt max{ ity . Crat) MAX( Ba—i. €n)

Conditions (a) and (b) of step (1) are then checked. If max( uk, cesr) is still not

determined in cither integral of fo. then another partition is needed; in which
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The probability: P {Dy<t+v) for v € R is finally given by :

P(Dy<t+v)= 8 — 12 +v -} for é<u§%
Q-2 for t<v<i
For v € Ry , we have
i+ 1 1
P(Ds<ti+v)=h= n f f 3! dus du, duy
0 1 max(uz, 3-v)
Ly= w ., Ly=1 ;and =3 -v. W<y forall ve Ry
ar= uy and a;=1
az< ¢ if v< -3 ( false in Ra)
a2 e if v23 ( false in R; except at v = )
Henee, [y i partitioned as lollows
é"l'v i-—v 1
12 = f f f 3! du; du; du1
0 #1 max( uz, %-v)
t+v 1 1
+ f f f 3! dug dua du;
0 g-—u max( u3, }—v)
= Iy + Iy

I3y has to be partitioned into [5, and Iy, for which max{ us, g —-v)is g— -v

and ug, respectively. No partitioning is needed for I for which max( ug, %— v)

s u,.
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Collecting the results for all v,the probability P (D3 < 4 v ) is given

0 for v<90
48 v® for 0<v<g
P(Dyetapy = STRIHy =g o Gevgy
5 Yy —dP - 4 for <vsi
2u3—5v1+%v—ll—0;- for %<v<%

1 for u>%
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